The Amine Addition Products of Pseudoascaridole

ALFONSE RUNQUIST, GARY PIERSON, AND OLAF RUNQUIST

Department of Chemistry, Hamline University, St. Paul, Minnesota 55101

Received March 11, 1969

Ascaridole (1), the main constituent of chenopodium oil, undergoes thermal rearrangement to yield pseudo-ascaridole, an isomeric *cis*-diepoxide (2). Thoms and Dobke² treated pseudoascaridole with aqueous ammonia and methylamine and assigned structures **5a** and **5b**, respectively, to the resulting products. This paper presents data indicating that the correct structures for these amino alcohols are represented by **3a** and **3b**. The

product resulting from the reaction of aqueous ammonia and pseudoascaridole (3a) was recovered unchanged after 5-hr reflux with 5% HCl. The infrared spectrum of 3a showed the presence of two hydroxyl groups (two resolved strong peaks at 3230 and 3350 cm⁻¹) while the nmr spectrum showed two one-proton doublets at τ 6.30 and 6.45 with coupling constants of 9 ± 1 Hz. The position of these doublets is indicative of the CH(OH)-CH(OH) structure and the large J value confirms the cisconfiguration of the hydroxyls at C-2 and C-3. Treatment of 3a with acetyl chloride gave the diacetate hydrochloride 4. The infrared spectrum of the latter compound showed no absorption in the 3100-3700 cm⁻¹ region but had a strong carbonyl band at 1730 cm^{-1} . The product resulting from the reaction of methylamine and pseudoascaridole, 3b, had a strong peak in the infrared at 3400 cm $^{-1}$ and two one-proton doublets at τ 6.17 and 6.51 with coupling constants of 8 ± 1 Hz.

The structures of the amine addition products can be rationalized by the following reactions which involve an initial attack of the amine at C-1 (or C-4) followed by an internal attack of nitrogen at C-4 (or C-1). While

the initial attack of nitrogen at a tertiary carbon seems unlikely on steric grounds, it is consistent with the observation that basic hydrolysis of 2 yields the all-trans p-menthane-1,2,3,4-tetrol (6). 1a

Experimental Section⁸

Pseudoascaridole (2).—Ascaridole was isomerized according to the procedure described by Nelson.⁴ The pseudoascaridole was purified by distillation: bp 70-73° (0.5 mm).

was purified by distillation; bp 70–73° (0.5 mm).

1,4-Imino-p-menthane-2,3-diol (3a).—Pseudoascaridole and 25% NH₄OH were heated at 125° in a sealed tube for 5 hr. The reaction mixture was extracted with ether. The ethereal solution was dried and concentrated to yield 1,4-imino-p-menthane-2,3-diol, mp 141°; nmr (8% CDCl₈) τ 6.30 (d, 1, J = 9 Hz), 6.45 (d, 1, J = 9 Hz), 7.9–8.3 (m, 5), 8.75 (s, 3), 9.0 (d, 3, J = 7 Hz), 9.1 (d, 3, J = 7 Hz), and a three-proton peak whose position was concentration dependent; ir (Nujol) 3230 and 3350 cm⁻¹ (COH).

1,4-Imino-p-menthane-2,3-diacetoxy hydrochloride (4) was prepared by adding acetyl chloride to compound 3a. Recrystallization of the crude product from chloroform-petroleum ether C afforded the hydrochloride, mp 237-238°; ir (Nujol) 1730 cm⁻¹ (O=C—O), no absorption between 3700 and 3100 cm⁻¹.

Anal. Calcd for $C_{14}H_{24}\hat{O}_4NCl$: C, 54.98; H, 7.91. Found: C, 54.58; H, 7.84.

N-Methyl-1,4-imino-p-menthane-2,3-diol (3b).—A mixture of 16 g of pseudoascaridole and 13 g of absolute alcohol containing 4 g of methylamine was heated in a sealed tube at 125-130° for 12 hr.

The ethanol was removed by evaporation and the residue was recrystallized from petroleum ether C-chloroform to yield a white solid, mp 156.5–157.0°; nmr (8% CDCl₃) τ 6.17 (d, 1, J=8 Hz), 6.51 (d, 1, J=8 Hz), 7.5–8.7 (m, 5), 8.8 (s, 3), 9.00 (d, 3, J=7 Hz) 9.02 (d, 3, J=7 Hz), and a two-proton peak whose position was concentration dependent; ir (Nujol) 3400 cm⁻¹ (COH).

Registry No.—3a, 20797-85-7; 3b, 20817-02-1; 4, 20797-86-8.

Acknowledgment.—The support of this work by a research grant (E-3095) from the National Institute of Allergy and Infectious Diseases, Public Health Service, and a grant from the Louis W. and Maud Hill Family Foundation is gratefully acknowledged.

- (3) Melting points are uncorrected.
- (4) E. K. Nelson, J. Amer. Chem. Soc., 33, 1404 (1911).

Knoevenagel Condensation in the Homophthalic Acid Series. A Synthesis of Zearalenone

N. N. GIROTRA AND N. L. WENDLER

Merck Sharp & Dohme Research Laboratories, Merck & Co., Inc., Rahway, New Jersey 07065

Received March 20, 1969

The homophthalic acid system is formally an aromatic analog of malonic acid and might consequently be expected to function in some measure in a Knoevenagel condensation with resultant loss of carbon dioxide and water.¹

^{(1) (}a) O. A. Runquist, Ph.D. Thesis, University of Minnesota, July 1956, pp 20-46; Dissertation Abstr., 16, 2313 (1956). (b) J. Boche and O. Runquist, J. Org. Chem., 33, 4285 (1968).

⁽²⁾ H. Thoms and W. Dobke, Arch. Pharm., 268, 128 (1930).

⁽¹⁾ For a recent review of the Knoevenagel reaction, see G. Jones, Org. Reactions, 15, 204 (1967).